Abstract

In the present work, we have deposited calcium doped zinc oxide thin films by magnetron sputtering technique using nanocrystalline particles elaborated by sol–gel method as a target material. In the first step, the nanoparticles were synthesized by sol–gel method using supercritical drying in ethyl alcohol. The structural properties studied by X-ray diffractometry indicates that Ca doped ZnO has a polycrystalline hexagonal wurzite structure with a grain size of about 30nm. Transmission electron microscopy (TEM) measurements have shown that the synthesized CZO is a nanosized powder. Then, thin films were deposited onto glass substrates by rf-magnetron sputtering at ambient temperature. The influence of RF sputtering power on structural, morphological, electrical, and optical properties were investigated. It has been found that all the films deposited were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. They have a typical columnar structure and a very smooth surface. The as-deposited films show a high transmittance in the visible range over 85% and low electrical resistivity at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.