Abstract

This paper investigates the effect of scribing speed on the surface morphology and material removal behavior in diamond wire sawing of monocrystalline silicon through specially designed high-speed diamond scribing experiments. High-speed scribing tests are performed on a (100) monocrystalline silicon wafer over a wide range of speeds. The results show that a higher scribing speed is prone to inducing more surface defects such as burrs and tearing in the ductile scribing region, and more radial cracks in the brittle scribing region. The critical scribing depth of ductile-to-brittle transition is found to decrease with increasing scribing speed. A strain rate hardening effect is evident in the experimental data, which explains the underlying mechanism for promotion of brittle fracture at higher scribing speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.