Abstract
This paper proposes the use of micron-sized aluminum (pyral, average particle size ) with a higher specific surface area as a good candidate to enhance the burn rate of the composite propellant. Experiments were performed in the pressure range of 10 to 70 bar in a window bomb for measuring the burn rate. Comparison of these burn rate results with those obtained using micron- and nanosized aluminum found that the performance of pyral was in between that of micron- and nanosized aluminum. The reason for the high burn rates observed with pyral is due to the flake like appearance of pyral with a large specific surface area. It is argued that, if the specific surface area is large, then the thickness becomes the characteristic length scale. This ensures the heat release from the aluminum combustion to occur closer to the propellant surface as the thickness of pyral is in nanometers. Both the x-ray diffraction and heat of formation analyses indicated that pyral had higher purity than nanoaluminum, which has an implication to the specific impulse of the propellant. In addition to this, it shows that the micron-sized catalyst is effective with pyral, whereas it is ineffective with nanoaluminum. This study also reports the mechanical properties of the propellant containing pyral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.