Abstract

S OLID propellant is one of the most significant ingredients used in rockets. The burning rate of propellant is a vital parameter for rocket design. A promising method to enhance the burning rate of propellants is to use burning-rate promoters (BRPs). BRPs have become increasingly important and are receiving more attention recently due to their successful use in solid propellant burning-rate enhancement. Generally, there are several kinds ofBRPs; transitionmetal oxides, nanometal particles, metal chelate, ferrocene, and its derivatives. Transition metal oxide BRPs are cheap, but the burning-rate improvement of propellant is limited. The addition of nanometal particles can enhance the burning rate because nanometal particles have large specific surface areas and higher surface energy. However, nanometal particles are difficult to disperse well and passivation is needed for their surface to prevent spontaneous combustion in air [1]. Organic metal chelate BRPs, such as copper organic chelate and Plumbum iron double metal chelate, can greatly enhance the burning rate due to their good dispersion in propellants. Ferrocene and its derivatives have attracted much attention for their fascinating properties as BRPs [2]. They have been widely used in composite propellant, especially to enhance the burning rate of butyl hydroxide propellant, which contains ammonium perchlorate (AP) and aluminum powder. When ferrocene and its derivatives are used as BRPs, they are easy to migrate during storage. This migration affects their application in propellants. In this Note, we explore the possibility of using a series of poly(ferrocenylsilanes) with highmolecular weights as BRPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.