Abstract

Ensuring food security under climate change scenario requisites amending degraded soils and sustainably boost staple crops yield in a biologically viable way through effective plant nutrition management strategies. Two multi-year lysimeter experiments at Sakha Agricultural Research Station, Kafr El Sheikh, Egypt, were conducted to investigate the impact of soil organic substances and foliar application of nano-Silica on physico-chemical soil properties and yield of wheat in salt affected soils (2017/18 and 2018/19 winter seasons). The experiment was executed in split plot with three replicates having organic substances (Molas (M),Compost tea (CT), K-humate (KH), M+CT, M+KH, CT + KH, M+CT+KH and control treatment in main plots while sub plots had foliar application of (tab water and nano-Silica).The results showed that physico-chemical properties (bulk density, porosity , cation exchange capacity, electrical conductivity, exchangeable sodium percentage etc.) and fertility (availability of Nitrogen, Phosphorus and Potassium ) of the soil were significantly influenced by all organic substances, however co-application of molas+K-humate+compost tea remained unmatched. The same treatment combination also remained effective in boosting Nitrogen and protein in grain along with wheat yield during both seasons. With foliage applied nano Silica remained superior by recording the highest yield attributes and grain yield of wheat. Therefore, it is inferred that co-application of organic substances and foliage applied of nano-Silica could be developed as an effective approach to restore and conserve the soil and increase wheat productivity in salt affected soils environment arid and semi-arid regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.