Abstract
AbstractCuprous oxide (Cu2O) thin films have been grown on both soda lime glass (SLG) microscope slides and Fluorine-doped Tin Oxide (FTO) substrates by a modified SILAR technique. The pH level of the bath solution was systematically varied in the range of 4.50 – 7.95 to elucidate their effect on the physical properties of the deposited product. The prepared films showed compact surface morphology composed of spherical grains evident from their SEM images. The XRD measurement showed that the as-deposited films were single phase Cu2O with (111) preferred orientation and this texturing was found to be increasing with increasing pH and annealing temperature. The annealed Cu2O films were found to be stable up to 200 °C and completely converted to cupric oxide (CuO) phases when the temperature reached to 350 °C. The estimated optical bandgaps of the as-grown samples were found in the range of 2.28 – 2.48 eV using UV-Vis-NIR transmission data and showing a bandgap narrowing trend with the decreasing level of solution pH. The effect of post-annealing temperatures (75-350 0C) on the as-deposited films was also studied and found to be crucial to control the optical bandgap (1.44 – 2.13) eV and electrical properties of the films. The sheet resistance of the as-deposited samples was found to be decreasing from 4120 MΩ/square to 800 MΩ/square while grown with increasing acetic acid content in the precursor solutions and decreasing up to 2.66 MΩ/square while annealing up to 250 °C in the air.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have