Abstract

Oiling-out is a unique phenomenon that the liquid phase is separated into two parts during crystallization. The emergence of new liquid phase changes the environment where crystals nucleate and grow, we call "mother phase," because target material and impurities become distributed to each phase according to their own particular distribution ratios. In our previous study on crystallization of an intermediate compound with impurities (denoted Imp-A, -B, and -C), we found that when oiling-out was formed, incorporation of Imp-C was inhibited, because Imp-C was distributed to the mother phase less than Imp-A and -B. In this study, we explored the effect of EtOH solution composition on impurity profile of the crystallized product in oiling-out crystallization, and found that the low content of Imp-B in the EtOH solution, the higher content of Imp-C in the crystallized product. Our finding revealed that not only oiling-out but also Imp-B played a key role in inhibiting the incorporation of Imp-C into the crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.