Abstract

Perfluorocarboxylic acids (PFCAs) are one of the most widely detected classes of PFAS in the global environment after decades of intensive use. This study investigated the impact of perfluorinated carbon chain length on the transport behavior of PFCAs by testing and modeling two short-chain (PFPeA and PFHxA) and two long-chain PFCAs (PFOA and PFDA) in laboratory water-saturated columns. Moreover, their transport behavior was examined under different solution chemistry conditions, including pH, ionic strength, and cationic type. The experimental and simulation results indicated that the chain length had a limited impact on transport behaviors of PFPeA, PFHxA, and PFOA under various pH and ionic strengths, evidenced by their tracer-like breakthrough curves. In contrast, the mobility of PFDA was significantly affected by pH and ionic strengths. Additionally, the transport of all four PFCAs was inhabited in the presence of the divalent cation Ca2+. This study could help predict migration behavior and assess the potential risk of PFCAs in the subsurface system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.