Abstract

A framework is presented for modeling the nucleation in the constitutionally supercooled liquid ahead of the advancing solid/liquid interface. The effects of temperature gradient, imposed velocity, slope of liquidus, and initial concentration have been taken into account in this model by considering the effect of interface retardation, which is caused by solute buildup at the interface. Furthermore, the effect of solute concentration on the chemical driving force for nucleation has been considered in this model. The model is used for describing the nucleation of Al–Si and Al–Cu alloys. It was found that the solute of Si has a significant impact on the chemical driving force for nucleation in Al–Si alloys whereas Cu has almost no effect in Al–Cu alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.