Abstract

• The solid-solution strength linearly increases with v in V 1- x Cr x CoNi alloys. • Addition of v highly increases SFE and induces planar slip behavior. • The V -abundant VCrCoNi alloys exhibit higher strain-hardening than TWIP CrCoNi alloy. • High friction stress is predominant than SFE in determining deformation mechanism. • High friction stress lowers cross-slip activation and dislocation annhiliation rate. High- and medium-entropy alloys (HEAs and MEAs) possess high solid-solution strength. Numerous investigations have been conducted on its impact on yield strength, however, there are limited reports regarding the relation between solid-solution strengthening and strain-hardening rate. In addition, no attempt has been made to account for the dislocation-mediated plasticity; most works focused on twinning- or transformation-induced plasticity (TWIP or TRIP). In this work we reveal the role of solid-solution strengthening on the strain-hardening rate via systematically investigating evolutions of deformation structures by controlling the Cr/V ratio in prototypical V 1- x Cr x CoNi alloys. Comparing the TWIP of CrCoNi with the dislocation slip of V 0.4 Cr 0.6 CoNi, the hardening rate of CrCoNi was superior to slip-band refinements of V 0.4 Cr 0.6 CoNi due to the dynamic Hall-Petch effect. However, as V content increased further to V 0.7 Cr 0.3 CoNi and VCoNi, their rate of slip-band refinement in V 0.7 Cr 0.3 CoNi and VCoNi with high solid-solution strength surpassed that of CrCoNi. Although it is generally accepted in conventional alloys that deformation twinning results in a higher strain-hardening rate than dislocation-mediated plasticity, we observed that the latter can be predominant in the former under an activated huge solid-solution strengthening effect. The high solid-solution strength lowered the cross-slip activation and consequently retarded the dislocation rearrangement rate, i.e., the dynamic recovery. This delay in the hardening rate decrease, therefore, increased the strain-hardening rate, results in an overall higher strain-hardening rate of V -rich alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call