Abstract
The effect of the solid loading (41–50 wt%) of the slurry on granulometric composition and physico-chemical characteristics of Y2O3–Al2O3–Nd2O3 powder mixtures obtained by planetary ball milling has been studied for the first time. It was shown that the particle size distribution of powder, its Zeta potential, and specific surface area depend on the solid loading of the milled slurry and, consequently, on the interparticle distance during milling. The interparticle distance decreases from 200 nm to 142 nm with an increase of solid loading in the range of 41–50 wt%. It was shown that for the solid loading of 47 wt%, the convergence of particles to a distance comparable to their median diameter promotes subsequent clustering of particles. This facilitates the sintering of highly-homogenous ceramics. It was found that solid loadings in the 46–50 wt% range is useful for obtaining high-quality Nd:YAG transparent ceramics. The lowest optical losses optical losses of 1 × 10−3 cm−1 and the highest in-line transmittance of 84.1%@1064 nm were obtained for 1 at.% Nd:YAG transparent ceramics (22 × 3 × 4 mm3) prepared from slurries with 47 wt% solid loading (taking all other ball milling parameters fixed). If the interparticle distance in the powder is higher (solid loading of 41 wt%) than the median particle diameter, the ceramics are characterized by significant residual porosity due to the survival of large particles (insufficient milling).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have