Abstract

The development of electronic and communication technology keeps us updated, but it also creates electromagnetic interference (EMI), which causes infrastructure, hospitals, military facilities, nuclear power plants and delicate devices to malfunction. Therefore, it is crucial to stop the EMI-related infrastructure and electronic component failure. Copper-coated textiles are one potential example of the electrically conducting materials that might be utilized to provide an EMI shielding. However, the copper-coated materials’ performance is typically reduced by chemical and mechanical deterioration, especially when it comes to EMI shielding. In this work, we have improved their durability of Cu-coated nonwoven fibrous materials (Milife fabric) by simple silanization treatment. Later, the mechanical and chemical stability was assessed in terms of their morphology and EMI shielding effectiveness (EMSE). The silane coating helps to protect the Cu layer from degradation due to mechanical forces and chemical environment. Silanes also be a key element in obtaining improve the EMI shielding properties for a longer period. The formation of conductive structures on the fibrous materials was observed using a scanning electron microscope (SEM), which further confirms the effect of silane coating on chemical stability, abrasion and washing resistance of Cu-coated fibrous materials (cMi) was analyzed. In addition to this, the EMSE values of the silane-coated cMi fibrous materials were used to evaluate the physical, chemical and mechanical stability of the materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.