Abstract

The properties of soils affected by salinity and processes involving degradation of soil structure have been partly recognized. However, the effects of saline and sodic conditions on mechanical and physical properties of soils have been studied to a lesser extent. In this research, the effects of electrical conductivity (EC) and sodium adsorption ratio (SAR) on soils possessing various amounts of organic matter were assessed under laboratory conditions. The soils contained a uniform clay type, predominantly Illite. The major difference of the soils was their amount of organic matter content. The treatments consisted of solutions with definite EC and SAR (two levels of EC: 0.5 and 4 dS/m and three levels of SAR: 0, 5 and 15). The amount of tensile strength was dependent on organic matter, EC, and SAR in a way that with the increase of SAR, the tensile strength decreased. In similar SAR, treatments with higher EC exhibited greater tensile strength. Also, the soils with higher organic matter showed greater tensile strength. The analysis of variance showed the significant difference (at 1%) between the mean of parameters analyzed (soil type, sampling depth, EC, and SAR). The order of averages of tensile strength were: permanent pasture ( Agropyron elengatum)<intensive cultivation<permanent pasture ( Festuca arusdinaceae)<virgin soil. The differences were also significant for the SAR factor. The order of averages were: SAR=15<SAR=5<SAR=0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call