Abstract

The presence of small amounts of sodium has been shown to improve the electronic performance of Cu(In,Ga)Se2 (CIGS) solar cells, but the origins of this effect have not yet been fully resolved. In this work, we have addressed the questions involving the role of sodium in CuInSe2 (CIS) using density-functional-theory-based calculations. We find no direct way how the creation of Na-related point defects in bulk CIS would enhance p-type conductivity. Instead, we demonstrate that Na reduces copper mass transport due to the capture of copper vacancies by NaCu defects. This finding provides an explanation for experimental measurements where the presence of Na has been observed to decrease copper diffusion. The suggested mechanism can also impede VCu-related cluster formation and lead to measurable effects on defect distribution within the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.