Abstract
HypothesisSodium citrate (Na3Cit) has been proven to improve the oil sands extraction recovery, but its mechanism is still unclear. Here we hypothesize that the presence of Na3Cit affects the asphaltene behaviour at the oil–water interface, which enhances oil–water separation and, thereby, heavy oil recovery. ExperimentsNa3Cit-asphaltene interaction was first investigated on their interfacial shear rheology at one heptol-water interface. Na3Cit-asphaltene interaction was further revealed by measuring the interaction forces between two heptol-water interfaces using the atomic force microscopy droplet technique combined with the Stokes-Reynolds-Young-Laplace (SRYL) model. Interfacial properties were further illustrated through interfacial tension, zeta potential, Langmuir trough, and FE-SEM. FindingsNa3Cit was found to weaken the strength of the asphaltene film at the heptol-water interface. Moreover, Na3Cit could diminish the adhesion forces observed between two asphaltene-in-heptol droplets in high salinity solutions. Besides, Na3Cit also made the asphaltene-in-heptol droplet more negatively charged. These results collectively suggest that Na3Cit-asphaltene interaction results in a looser and more elastic asphaltene interfacial network with the slow formation and reduces the adhesion between two interfaces, all of which are most likely the consequence of increased electrostatic repulsion between asphaltene interfacial nanoaggregates. Our study provided new understandings of Na3Cit-asphaltene interactions at the interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.