Abstract

Salmonella cause economic losses to the swine industry due to disease and compromised food safety. Since the gut is a major reservoir for Salmonella, strategies are sought to reduce their concentration in pigs immediately before processing. Respiratory nitrate reductase activity possessed by Salmonella also catalyzes the intracellular reduction of chlorate (an analog of nitrate) to chlorite, which is lethal to the microbe. Since most gastrointestinal anaerobes lack respiratory nitrate reductase, we conducted a study to determine if chlorate may selectively kill Salmonella within the pig gut. Weaned pigs orally infected with 8 × 107 CFU of a novobiocin- and nalidixic acid–resistant strain of Salmonella Typhimurium were treated 8 and 16 h later via oral gavage (10 ml) with 0 or 100mM sodium chlorate. Pigs were euthanized at 8-h intervals after receiving the last treatment. Samples collected by necropsy were cultured qualitatively and quantitatively for Salmonella and for most probable numbers of total culturable anaerobes. A significant (P < 0.05) chlorate treatment effect was observed on cecal concentrations of Salmonella, with the largest reductions occurring 16 h after receiving the last chlorate treatment. An observed treatment by time after treatment interaction suggests the chlorate effect was concentration dependent. Chlorate treatment may provide a means to reduce foodborne pathogens immediately before harvest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call