Abstract

3D ink printing (3DIP) technology can accurately control the macroscopic size and microstructure of bioceramic scaffolds. However, nonceramic components in the printing ink used in 3DIP severely affect densification, resulting in less desirable mechanical properties of the scaffolds. In this study, a strategy of sintering assisted by a sintering aid (sodium carbonate) was used to prepare calcium silicate (CSi) scaffolds with high strength. The addition of 1% sintering aid to a CSi scaffold sintered at 1100 °C led to an appreciable compressive strength (47.8 MPa) and high elastic modulus (1847 MPa). Moreover, the CSi scaffolds with sintering aids showed better degradation ability and mineralization ability than the CSi scaffolds without sintering aids. It is expected that the method involving strengthening with sintering aids will promote the application of 3DIP bioceramic scaffolds in the repair of bone defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call