Abstract
We studied the effect of sodium butyrate, a potent G1/G2-arresting agent, on actin distribution in rat 3Y1 fibroblasts in monolayer culture by fluorescence microscopy of cells stained with 7-nitrobenz-2-oxa-1, 3-diazole phallacidine (NBD-Ph). When randomly proliferating cells were arrested mainly in G1 phase with butyrate, a reversible overaccumulation of cellular net protein occurred. In the G1-arrested cells, actin markedly accumulated at the margin of cells, and a network structure of actin stress fibers appeared. When density-arrested cells were replated sparsely and rearrested in the G1, early S, and G2 phases with butyrate or hydroxyurea, the actin network was observed extensively in the cells arrested in the G1 and G2 phases with butyrate. These results agree with our previous results indicating the existence of some physiological similarity between cells in the G1 and G2 phases and suggest that actin distribution somehow depends on the phases of the cell cycle. The actin profiles observed by the NBD-Ph staining were confirmed by transmission electronmicroscopy (TEM) of negatively stained whole cells. TEM further revealed that electron-dense amorphous materials were present at crossing points in the network but rarely present on interconnecting microfilament bundles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.