Abstract
The aim of this study was to evaluate the effects of a smear layer generated by a high-speed diamond or carbide bur on the durability of microtensile bond strength (μTBS) of a self-etching adhesive to primary dentin. Flat occlusal dentin surfaces of 105 human primary molars were exposed using 600 grit silicon carbide paper before being divided into 2 groups for further grinding with either a highspeed diamond or carbide bur. Ten prepared dentin surfaces treated by each bur were evaluated for the characteristics of the smear layer using a scanning electron microscope (SEM). Seventy-five specimens from each bur-prepared group were applied with a 2-step self-etching adhesive (Clearfil SE Bond(®)) then built up with a resin composite. Each bonded specimen was sectioned into a 1-mm thick slab and trimmed to a dumbbell shape with a cross-sectional area of approximately 1 mm(2). All slabs were divided into 3 groups (n=25) according to 3 storage times of 24 hrs, 3 months, and 6 months, in distilled water at 37°C. After storage, the μTBS was determined using a universal testing machine. All fracture specimens were prepared for observation of failure modes. Ten bonded specimens of each bur group were prepared for observation of the resin-dentin interface using an SEM. Smear-layer thickness, μTBS, and failure mode distributions were statistically analyzed. The high speed carbide bur created a significantly thinner smear layer than the diamond bur (p < 0.05). Dentin surfaces treated with a high-speed carbide bur generally obtained significantly higher μTBS than the diamond bur group (p < 0.05). The μTBS gradually decreased over time such that specimens stored for 6 months had significantly lower bond strength than those stored for 24 hrs (p < 0.05). Self-etching adhesive created a hybrid layer of the same thickness when prepared with either a carbide bur or diamond bur, but the carbide bur group had longer and more resin tags. Highspeed carbide bur groups had a higher μTBS than diamond bur groups for all storage times, and bond strengths decreased over time in both substrate groups. The use of a carbide bur produced a thinner smear layer and therefore is recommended when using this 2-step self-etching adhesive to bond the resin composite to primary dentin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.