Abstract
Recent experimental data have revealed that a small amount of impurity can significantly influence the superplastic behavior in Zn-Al eutectoid superplastic alloy. However, the effect of Si content on the superplastic behavior in Zn-Al alloy has not been reported. In this study, the superplastic behavior at a room temperature of two grades of the Zn-Al eutectoid superplastic alloy was studied under identical conditions of grain size, temperature, and strain rate. These two grades were prepared from high-purity Zn, Al and Al-Si alloy using the same procedure but different Si impurity levels; Zn-Al-10Si and Zn-Al-1000Si contain 10 and 900 wt. ppm of Si, respectively. As a result of annealing treatments, an average grain size of 0.6 μm in both grades. To investigate the effects of Si content on superplastic properties, the tensile tests were performed at a room temperature of 298 K and a constant strain rate of 1×10-3 s-1. Microstructures before and after the tensile tests was observed using a scanning electron microscope. The experimental results show that the elongations decreased with increasing the Si content. In contrast, the flow stress of Zn-Al alloys was not affected by the Si content. On the microstructure observation of the two grades of the Zn-Al alloy before and after the tensile tests, cavities existed at grain boundaries and strain enhanced grain growth was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.