Abstract

The effect of Sm content (2, 4, 6, 8wt.%) on the microstructures and mechanic properties of gravity casting Mg-xSm-0.4Zn-0.3Zr alloys were investigated. The results showed that the cast alloy mainly consists of α-Mg matrix and Mg41Sm5 phase distributed at the grain boundaries, and the amount of the second phase increased with the rise of Sm content. After the solution treatment (T4), the second phase disappeared, however small amount of cuboid-like phase were found inside the grain, and its volume fraction also increases with the rise of Sm content. It is found in the age hardening curves of the alloys at 175, 200, and 225 °C that the alloys with various components almost showed the same trend of age hardening. While the higher the Sm content, the harder the alloy. With the Sm content increases, the yield strength (TYS) of cast alloys (F state) were obviously improved, however the tensile strength (UTS) became lower because of the quick drop of the elongation. The elongations of solid solution (T4) and aging (T6) alloy became lower, while the yield strength and tensile strength increased at first and then decreased. The optimized component is Mg-4Sm-0.4Zn-0.3Zr, which the mechanic properties at T6 state are: TYS=131MPa; UTS=261MPa; δ=6.8%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call