Abstract

In this work, the effects of the sludge retention time (SRT, 35, 25, or 15 d) and pH (7.5, 8.0, 8.5) on denitrifying phosphorus removal were investigated using denitrifying phosphorus bacteria (DPBs) enriched in a sequencing batch reactor (SBR). The results indicated that shortening the SRT from 35 d to 25 d resulted in a decrease in the mixed liquor volatile suspended solids (MLVSS) from 2821 to 2301 mg·L-1, while the sludge loading rate (F/M) increased from 0.256 kg·(kg·d)-1to 0.312 kg·(kg·d)-1. Although the quantity of net phosphorus release and net phosphorus uptake decreased at this stage, the rates of anaerobic phosphorus release, anoxic phosphorus absorption, and denitrification reached their highest levels with values of 25.07, 15.92, and 9.45 mg·(g·h)-1, respectively, due to the increased sludge activity. Consequently, the phosphorus content of the sludge increased from 4.78% to 5.33%, and the removal rate of PO43--P was stable at above 95% with an average effluent PO43--P concentration below 0.5 mg·L-1. When the SRT was further shortened to 15 d, the MLVSS decreased to values as low as 1448 mg·L-1, and the proportion of DPBs in the phosphorus accumulating organisms (PAOs) decreased from 82.4% to 65.7%, indicating that the DPBs were gradually washed out from the system due to the excessively short SRT. At this stage, the phosphorus content of sludge decreased to 3.43%, while the rates of phosphorus release, phosphorus absorption, and denitrification also decreased to some extent. When the pH was increased (7.5-8.0), the anaerobic phosphorus release rate and the anoxic phosphorus absorption rate also increased, and reached 25.86 mg·(g·h)-1 and 16.62 mg·(g·h)-1, respectively, at a pH of 8.0. When the pH exceeded 8.0, the phosphorus removal efficiency dropped rapidly, supposedly due to phosphorus chemical precipitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.