Abstract

This paper studies the changes on a Ferrofluid (FF)-based longitudinally rough porous plane slider bearing (PSB) caused by the slip velocity (SV). The impact of magnetic fluid (MF) lubrication has been analyzed by using the Neuringer and Rosensweig model. The changes exerted by longitudinal roughness have been studied using the stochastic averaging model of Christensen and Tonder. The effects of SV are calculated by using the slip model of Beavers–Joseph. The pressure distribution (PD) expression has been calculated by solving the related nondimensional Reynolds’ type equation. These calculations have been used to calculate the load carrying capacity (LCC). According to the results, LCC increases due to MF lubricant. The surface roughness, on the other hand, has a negative impact on the performance. The same goes for the SV. However, it has been found that these adversities caused by surface roughness, SV, and porosity can be partially neutralized by the positive impact of magnetization, though it can be said that SV in general decreases the bearing performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call