Abstract

The purpose of this paper is to analyse the performance of a magnetic fluid based rough, porous composite slider bearing. The bearing surfaces are assumed to be transversely rough. The random roughness of the surfaces is characterized by a stochastical variance with non zero mean, variance and skewness. The associated Reynolds Equation is stochastical averaged with respect to this random roughness parameter solving this Equation in view of suitable boundary conditions. The expression for pressure distribution is obtained leading to the calculation of load carrying capacity. Friction is also computed. It is clearly observed that the load carrying capacity increases due to the magnetization parameter and the bearing surfaces owing to transverse surface roughness in general. However this investigation offers some scope to mitigate the negative effect of roughness by the magnetic fluid lubrication at least in the case of negatively skewed roughness. It is interesting to note that the magnetization fails to alter the friction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call