Abstract

In the present study, the influence of various slip zone locations on the dynamic stability of finite hydrodynamic journal bearing lubricated with non-Newtonian and Newtonian lubricants has been investigated. Linearized equation of motion with free vibration of rigid rotor has been used to find the optimum location of the slip region with maximum stability margin limit. It has been observed that bearing with interface of slip and no-slip region near the upstream side of minimum film-thickness location is effective in improving the direct and cross stiffness coefficient, critical mass parameter, and critical whirling speed. The magnitude of dynamic performance parameters with slip effect is highly dependent on the rheology of lubricant. Shear-thinning lubricants combined with slip boundary condition shows higher dynamic stability as compared to the Newtonian lubricants under the conventional boundary condition. For all considered rheology of lubricants, the dynamic stability of bearing with slip effect is improving by increasing the eccentricity ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call