Abstract
The chief objective of this article is to propose a new method of incorporating the sliding friction and realistic time-varying stiffness into an analytical (multi-degree-of-freedom) spur gear model and to evaluate their effects. An accurate finite element/contact mechanics analysis code is employed, in the “static” mode, to compute the mesh stiffness at every time instant under a range of loading conditions. Here, the time-varying stiffness is calculated as an effective function which may also include the effect of profile modifications. The realistic mesh stiffness is then incorporated into the linear time-varying spur gear model with the contributions of sliding friction. Proposed methods are illustrated via two spur gear examples and validated by using the finite element in the “dynamic” mode as experimental results. A key question whether the sliding friction is indeed the source of the off-line-of-action forces and motions is then answered by our analytical model. Finally, the effect of the profile modification on the dynamic transmission error has been analytically examined under the influence of sliding friction. For instance, the linear tip relief introduces an amplification in the off-line-of-action forces and motions due to an out of phase relationship between the normal load and friction forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.