Abstract
An analytical solution to the dynamic transmission error of a helical gear pair is developed by using a single-degree-of-freedom model with piecewise stiffness functions that characterize the contact plane dynamics and capture the velocity reversal at the pitch line. By assuming a constant mesh stiffness density along the contact lines, a linear time-varying model (with parametric excitations) is obtained, where the effect of sliding friction is quantified by an effective mesh stiffness term. The Floquet theory is then used to obtain closed-form solutions to the dynamic transmission error, and responses are derived to both initial conditions and the forced periodic function under a nominal preload. Analytical models are validated by comparing predictions with numerical simulations, and the effect of viscous damping is examined. Stability analysis is also briefly conducted by using the state transition matrix. Overall, the sliding friction has a marginal effect on the dynamic transmission error of helical gears, as compared with spur gears, in the context of the torsional model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.