Abstract
Polycrystalline Bi 0.85Eu 0.15FeO 3 ceramics were synthesized by solid-state reaction method with rapid liquid phase sintering process at various sintering temperatures. The dependence of structural, microstructural, electrical, and magnetic properties on sintering temperature was systematically investigated. X-ray diffraction measurements reveal that single perovskite phase is developed in Bi 0.85Eu 0.15FeO 3 ceramics sintered at 850 and 870∘ C, while secondary phases can be detected in the samples sintered at 890∘ C due to the volatilization of Bi 3+ ions, and the crystallinity increases with increasing sintering temperature from 850 to 890 °C. The scanning electron microscopy investigation has suggested that the grain size increases with increasing sintering temperature from 855 to 890∘ C; while the pore size decreases with increasing sintering temperature from 850 to 870∘ C and then increases with a further increase of sintering temperature. The electrical and magnetic measurements show that the leakage current, dielectric constant, dielectric loss, and magnetic properties are strongly dependent on the sintering temperature. The Bi 0.85Eu 0.15FeO 3 ceramics sintered at 870∘ C have the lower leakage current, higher dielectric constant, and lower dielectric loss. The room temperature magnetization increases with increasing sintering temperature from 850 to 890 °C. The possible reason for all the above observations was discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.