Abstract

Lithium-doped zinc oxide (Zn0.99Li0.01O) film was manufactured by the sol-gel method using uniform and stable solution of zinc acetate dehydrate and lithium acetate dehydrate in methanol. Films were deposited by spin-coating using spinner between 4500 and 5000 rpm on silicon substrates. The prepared samples were sintered at various temperatures (600 oC ~ 1000 oC) in the air. The structural, morphological, and optical properties of the prepared lithium-doped ZnO films were investigated. The XRD pattern of Zn0.99Li0.01O film demonstrated the hexagonal wurzite structure. However, new crystal phase was discovered at a sintering temperature of 800 oC. New peak was found near 2θ = 22.6o in XRD patterns. The peak is thought to be the (101) plan in SiO2 cristobalite structure. Moreover, another new crystal phase related to Li2SiO5 was occurred at a sintering temperature of 900 oC. From XRD analysis, it was confirmed that C axis was decreased and the stress was increased, as sintering temperatures was increased from 600 oC to 900 oC. In cathodo luminescence (CL) data, zinc oxide usually appears ultra violet and green emission. However, the green emission did not appear in all these samples used in this study. The ultra violet emission showed red shift from 600 oC to 800 oC in the CL spectrum as the sintering temperature was increased. The phenomenon of the red shift can be explained in Burstein-Moss effect. At sintering temperature of 700 oC, the intensity of ultra-violet emission was the largest and full width at half maximum (FWHM) was the smallest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.