Abstract

Perovskite-type La0.8Ca0.2CrO3 complex oxides were synthesized by a combustion method. Microstructural evolution, electrical properties, and thermal expansion behavior of the ceramics were investigated in the sintering temperature range of 1250°C to 1450°C. It was found that the electrical conductivity (σe) remarkably improved with increasing sintering temperature from 1250°C to 1400°C, ascribed to the development of microstructural densification, whereas it declined slightly above 1400°C due to generation of excessive liquid. The specimen sintered at 1400°C had a maximum conductivity of 31.6 S cm−1 at 800°C, and lowest activation energy of 0.148 eV. The improvement of the thermal expansion coefficient (TEC) with increasing sintering temperature was monotonic as a result of the microstructural densification of the materials. The TEC of La0.8Ca0.2CrO3 sintered at 1400°C was about 10.5 × 10−6 K−1, being consistent with other components as high-temperature conductors. With respect to microstructure, electrical properties, and thermal expansion, the preferable sintering temperature was ascertained to be about 1400°C, which is much lower than for the traditional solid-state reaction method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call