Abstract

Geopolymer composites can be used as a proper substitute for ordinary Portland cement, which can reduce carbon dioxide (CO2) emissions and make rational use of industrial waste. In this study, an investigation of the workability and compressive strength of geopolymer composites was carried out through a series of experiments, such as slump flow test, consistency meter test and compressive strength test, to clarify the interaction mechanism among superplasticizer (SP), polyvinyl alcohol (PVA) fiber, Nano-SiO2 (NS) and geopolymer composites, thereby improving the properties of engineered composites. The results showed that with the increase in PVA fiber content, the flowability of geopolymer composites decreased, while the thixotropy increased. With the increase in the NS content, the flowability of geopolymer composites first increased and then decreased, reaching its best at 1.0%, while the thixotropy was the opposite. With the increase in the SP content, the flowability of geopolymer composites increased, while the thixotropy decreased. A significant correlation between thixotropy and flowability of geopolymer composites was found (R2 > 0.85). In addition, the incorporation of single PVA fiber or NS significantly improved the compressive strength of geopolymer composites. Specifically, the compressive strength of geopolymer composites with 0.8% content PVA fiber (60.3 MPa) was 33.4% higher than that without PVA fiber (45.2 MPa), and the compressive strength of geopolymer composites with 1.5% content NS (52.6 MPa) was 16.4% higher than that without NS (45.2 MPa). Considering the synergistic effect, it is found that the compressive strength of geopolymer composites (58.5–63.3 MPa) was significantly higher than that without PVA fiber (45.2–52.6 MPa). However, the flowability and compressive strength of geopolymer composites were only slightly improved compared to that without NS. With the increase in the SP content, the compressive strength of geopolymer composites showed a trend of a slight decrease on the whole. Consequently, the results of this study may be useful for further research in the field of repair and prevention of the delamination of composite structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call