Abstract

This study focuses on investigation into the effect of helium implantation on microstructure evolution in Inconel X-750 superalloy during dual-beam (Ni+/He+) irradiation. The 1 MeV Ni+ ions with the damage rate of 10−3 dpa/s as well as 15 keV He+ ions using rate of 200 appm/dpa were simultaneously employed to irradiate specimens at 400 °C to different doses. Microstructure characterization has been conducted using high-resolution analytical transmission electron microscopy (TEM). The TEM results show that simultaneous helium injection has significant influence on irradiation-induced microstructural changes. The disordering of γ′ (Ni3 (Al, Ti)) precipitates shows noticeable delay in dose level compared to mono heavy ion irradiation, which is attributed to the effect of helium on promoting the dynamic reordering process. In contrast to previous studies on single-beam ion irradiation, in which no cavities were reported even at high doses, very small (2–5 nm) cavities were detected after irradiation to 5 dpa, which proved that helium plays crucial role in cavity formation. TEM characterization also indicates that the helium implantation affects the development of dislocation loops during irradiation. Large 1/3 〈1 1 1〉 Frank loops in the size of 10–20 nm developed during irradiation at 400 °C, whereas similar big loops detected at higher irradiation temperature (500 °C) during sole ion irradiation. This implies that the effect of helium on trapping the vacancies can help to develop the interstitial Frank loops at lower irradiation temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call