Abstract
In this study, an attempt was made to develop and characterize Snake Grass Fiber (SGF)/Silicon Carbide (SiC)/epoxy and Snake Grass Fiber/Sisal Fiber (SF)/Silicon Carbide/epoxy hybrid composites using a compression moulding technique. Mechanical characteristics of the produced hybrid composites such as tensile, flexural, and hardness tests were analyzed. Also experiments have been carried out to predict the thermal stability of the fabricated composite samples. The interface between fiber and matrix was examined by using Scanning Electron Microscopy (SEM). Among SGF/SiC/epoxy and SGF/SF/SiC/epoxy composites, it has been observed that hybrid composite SGF/SF/SiC/epoxy exhibits the higher hardness of 82 Shore-D, tensile strength of 51 MPa and flexural strength of 73 MPa. In contrast to the mechanical properties, the percentage of water absorption was lower in the SGF/SiC/epoxy hybrid composite. It is proven from the results that the SGF/SF/SiC/epoxy hybrid composites will enhance the strength of the composites. This composite material is also a potential candidate for the hardware of energy devices including electrochemical energy along with Fuel Cell systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of New Materials for Electrochemical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.