Abstract

This paper studies the alkali activation of iron-rich aluminosilicates (laterites). Three activating alkaline solutions were prepared from sodium hydroxide solution (8, 10 and 12 M) with sodium silicate (Na2SiO3) in order to obtain the sodium silicate solutions with moduli of SiO2/Na2O equal to 0.75, 0.92 and 1.04; H2O/Na2O = 9.78, 10.45 and 12.04. The effects of above-defined solutions on the setting time, physical and microstructural properties of geopolymer binders from calcined laterite (600 °C), containing metakaolinite, as the sole binder at room temperature are reported and discussed. A laterite from Eloumden and one from Odza were used. The synthesized products were labelled GPEL(i=1.04, 0.92 and 0.75) and GPOD(i=1.04, 0.92 and 0.75) series. The dry compressive strength measured after 7 and 28 days were 4–10 and 10–18 MPa, respectively. It was typically found that the geopolymer paste from sodium hydroxide with molar concentration 12 M and the molar ratio SiO2/Na2O of the silicate solution equal to 0.75 produced the highest compressive strength (~ 18 MPa). These samples also have a denser matrix. The dry bulk densities of both series increased with the decrease of silica moduli and were in the range 2.31–2.43 and 2.32–2.52 g/cm3 and the water absorptions were in the range of 8.21–11.40% and 7.23–13.03% for geopolymers GPEL and GPOD series, respectively. The setting time decreased with increasing molarity of NaOH solutions. The physicochemical properties and the mineralogy of both iron-rich aluminosilicates were influenced by the silicate modulus of activating solutions and the best compositions were achieved with characteristic SiO2/Na2O = 0.75 and H2O/Na2O = 9.78.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.