Abstract

To investigate the influence of silane reaction time on the repair strength of an aged nanofilled composite and to characterize the bonding mechanism. Nanofilled composite disks (n = 110, Filtek Supreme XT) were aged for 90 days in water. After tribochemical treatment (CoJet-Sand), the specimens were assigned to 5 groups (n = 22), primed with silane (Espe-Sil), and left to react for 1, 2, 3, 4, and 5 min. A thin layer of adhesive (Visio-Bond) was applied and a new composite with the same dimension was placed and cured. Non-aged specimens immediately layered and cured using the incremental technique served as controls. After aging (30 days in water plus 5000 thermal cycles), the interface was subjected to a shearing force until failure. Failure mode was evaluated under a stereomicroscope and scanning electron microscopy (SEM). Additional aged and treated surfaces were evaluated for morphology as well as elemental and molecular composition using SEM/EDX and ATR-FTIR. The mean shear bond strength (SBS) of the repaired specimens was 53.9 ± 8.6 MPa, with no significant difference among the various reaction times, but significantly lower compared to the control (88.1 ± 12.5 MPa). Tribochemical treatment created an irregular surface morphology with particles imbedded in the aged surface. Interfacial SEM/EDX analysis showed a 5-μm non-uniform high atomic number zone rich in Al and Si. Tribochemical treatments for repairing composite using a short silane reaction period (1 min) are equally effective as the prolonged reaction periods (2 to 5 min), yielding interfacial shear strength of ~60% of unrepaired material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.