Abstract

Sigma phase is commonly considered to be the most deleterious secondary phase precipitating in duplex stainless steels, as it results in an extreme reduction of corrosion resistance and toughness. Previous studies have mainly focused on the kinetics of sigma phase precipitation and influences on properties and only a few works have studied the morphology of sigma phase and its influences on material properties. Therefore, the influence of sigma phase morphology on the degradation of corrosion resistance and mechanical properties of 2507 super duplex stainless steel (SDSS) was studied after 10 h of arc heat treatment using optical and scanning electron microscopy, electron backscattered diffraction analysis, corrosion testing, and thermodynamic calculations. A stationary arc was applied on the 2507 SDSS disc mounted on a water-cooled chamber, producing a steady-state temperature gradient covering the entire temperature range from room temperature to the melting point. Sigma phase was the major intermetallic precipitating between 630 °C and 1010 °C and its morphology changed from blocky to fine coral-shaped with decreasing aging temperature. At the same time, the average thickness of the precipitates decreased from 2.9 µm to 0.5 µm. The chemical composition of sigma was similar to that predicted by thermodynamic calculations when formed at 800–900 °C, but deviated at higher and lower temperatures. The formation of blocky sigma phase introduced local strain in the bulk of the primary austenite grains. However, the local strain was most pronounced in the secondary austenite grains next to the coral-shaped sigma phase precipitating at lower temperatures. Microstructures with blocky and coral-shaped sigma phase particles were prone to develop microscale cracks and local corrosion, respectively. Local corrosion occurred primarily in ferrite and in secondary austenite, which was predicted by thermodynamic calculations to have a low pitting resistance equivalent. To conclude, the influence of sigma phase morphology on the degradation of properties was summarized in two diagrams as functions of the level of static load and the severity of the corrosive environment.

Highlights

  • Super duplex stainless steel (SDSS), with approximately equal fractions of ferrite (δ) and austenite (γ), exhibits excellent performance in highly corrosive environments as well as when high mechanical loads are present

  • The results in this study showed that an accidental increase in operation temperature may lead to loss of mechanical properties and corrosion resistance

  • The influence of high temperature aging on σ morphology and the resulting degradation of corrosion and mechanical properties was investigated for 2507 super duplex stainless steel

Read more

Summary

Introduction

Super duplex stainless steel (SDSS), with approximately equal fractions of ferrite (δ) and austenite (γ), exhibits excellent performance in highly corrosive environments as well as when high mechanical loads are present. The superior stress corrosion cracking resistance of SDSSs make them applicable where austenitic stainless steels may not fulfill the requirements [1]. Their high pitting resistance, with a pitting resistance equivalent (PREN = % Cr + 3.3% Mo + 16% N) above 40, places them among the high corrosion-resistant stainless steels [2,3]. The processing and/or application of SDSS is limited at temperatures between 250 ◦ C and 1000 ◦ C due to phase decompositions leading to the formation of sigma phase (σ), chi phase (χ), secondary austenite (γ2 ), R-phase (R), Cr-rich ferrite (α0 ), nitrides, carbides, G-phase, etc. The precipitation of deleterious secondary phases, which are mostly enriched in Cr, Mo, and/or N, decrease the local corrosion resistance around the precipitates and often result in local corrosion attacks [1,9,10]

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call