Abstract

This study investigates and compares the kinetics of sigma phase formation in established Super Duplex Stainless Steel (SDSS) and recently developed Hyper Duplex Stainless Steel (HDSS) filler metal wires. Experimental sigma phase time-temperature-transformation (TTT) maps were developed, revealing nearly equivalent interface area/volume, resulting in similar sigma phase kinetics for 1% volume despite the higher Cr and Mo content in HDSS. However, the growth rate to 5% and 10% sigma phase volumes was slightly higher in HDSS. The sigma phase kinetics in both SDSS and HDSS were analyzed using the exponential Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach based on experimental TTT data. Linearized plots from the JMAK calculations showed a transition in kinetics mechanism from eutectoid decomposition and interface-controlled growth to a diffusion-controlled growth stage in both materials. The higher volumes and morphologies of the sigma phase were found to be diffusion-dependent, mainly occurring during the second kinetics stage. The influence of HDSS's higher Cr and Mo content on the growth rate was observed for these higher volumes. For applications within the 1% sigma phase limit, both wires exhibited equivalent susceptibility to sigma phase formation, regardless of the higher alloying in HDSS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call