Abstract
The effect of sidewall boundary conditions on the computed unsteady flow and sound pressure level is investigated in a transonic open cavity. The hybrid approach used for modeling turbulence combines a Reynolds averaged mode in the boundary layer, and a large eddy simulation mode in the massively separated flow region within the cavity to resolve the wide dynamic range involved. Computational results are presented for the instantaneous vorticity and for the sound pressure level spectra. Comparison of the results obtained using inviscid and periodic sidewall boundary conditions show the sensitivity of the computed SPL spectra and autocorrelation to the conditions enforced at the sidewalls. The computed SPL spectra are also compared with available experimental results, with LES computational results, and with prior investigations based on the same hybrid turbulence model without the wall function used in the current investigation. The comparisons show that the current results obtained using inviscid sidewall boundary conditions are closest to the experimental sound pressure level spectra and that agreement is achieved at considerable saving in required computational resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.