Abstract

This paper presents results of a computational study conducted to assess the multi-scale resolution capabilities of a hybrid two-equation turbulence model in predicting unsteady separated high speed flows. Numerical solutions are obtained using a third order Roe scheme and the SST (shear-stress-transport) two-equation-based hybrid turbulence model for three-dimensional transonic flow over an open cavity. A detailed assessment of the effects of the computational grid and the hybrid turbulence model coefficient is presented for the unsteady flow field. Computed results are presented for both the resolved and the modeled turbulent kinetic energy (TKE) and for the predicted sound pressure level (SPL) spectra, which are compared to available experimental data and large Eddy simulation (LES) results. The comparison shows that the predicted SPL spectra agree well with the experimental results over a frequency range up to 2500 Hz, and that hybrid turbulence effectively models the shorter wavelengths. The results demonstrate improved agreement with experimental SPL spectra with increased grid resolution and a reduced hybrid turbulence model coefficient. In addition, they show that energy dissipation of the unresolved scales is over-predicted at low resolutions and that the hybrid coefficient influences the grid resolution requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call