Abstract

PurposeThe association between air pollutant (PM2.5, PM10, NO2, and O3) concentrations and daily number of COVID-19 confirmed cases and related deaths were evaluated in three major Iranian cities (Tehran, Mashhad, and Tabriz).MethodsHourly concentrations of air pollutants and daily number of PCR-confirmed cases and deaths of COVID-19 were acquired (February 20th, 2020 to January 4th, 2021). A generalized additive model (GAM) assuming a quasi-Poisson distribution was used to model the associations in each city up to lag-day 7 (for mortality) and 14 (for morbidity). Then, the city-specific estimates were meta-analyzed using a fixed effect model to obtain the overall relative risks (RRs).ResultsA total of 114,964 confirmed cases and 21,549 deaths were recorded in these cities. For confirmed cases, exposure to PM2.5, NO2, and O3 for several lag-days showed significant associations. In case of mortality, meta-analysis estimated that the RRs for PM2.5, PM10, NO2, and O3 concentrations were 1.06 (95% CI: 0.99, 1.13), 1.06 (95% CI: 0.93, 1.19), 1.15 (95% CI: 0.93, 1.38), and 1.07 (95% CI: 0.84, 1.31), respectively. Despite several positive associations with all air pollutants over multiple lag-days, COVID-19 mortality was only significantly associated with NO2 on lag-days 0–1 and 1 with the RRs of 1.35 (95% CI: 1.04, 1.67) and 1.16 (95% CI: 1.02, 1.31), respectively.ConclusionThis study showed that air pollution can be a factor exacerbating COVID-19 infection and clinical outcomes. Actions should be taken to reduce the exposure of the public and particularly patients to ambient air pollutants.Supplementary InformationThe online version contains supplementary material available at 10.1007/s40201-021-00736-4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call