Abstract

AbstractA method to determine viscoelastic changes in medium density polyethylene (MDPE) pipe specimens associated with the crack tip during fatigue crack initiation (FCI) and propagation (FCP) experiments is described. The load‐displacement curves are analyzed to obtain the phase angle, δ. Changes in δ are related to the number of cycles of crack initiation of three different MDPE copolymers: hexene (H), butene (B), and methyl pentene (MP) copolymers. These changes are related to craze formation and growth at the notch tip, leading to crack initiation and to the irreversible work, Wi, expended on them. Within a given material, step wise increments in δ distinguish the onset of crack initiation and the brittle‐to‐ductile transition in crack growth. The magnitudes of tan δ and Wi are noted to be in quantitative agreement with the resistance of the three copolymers to FCI and brittle propagation that rank in the order: isobutyl (MP) > ethyl (B) > butyl (H). Similar crystallinity of the three copolymers insinuates a hypothesis that variance in the nature of chain entanglements associated with the respective branch type might be accountable for the observed differences in viscoelastic character. The final stage of failure by ductile tearing is dominated by large scale plastic flow that seemingly overshadows the material differences governing time dependent brittle fracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.