Abstract

Abstract In this work, the effect of fine grain sizes on the mechanical and bio-corrosion properties of AZ31 magnesium alloy was studied. Bio-corrosion refers to the accelerated degradation of metal within the human body. Fine-grained (~1.5 µm) AZ31 was obtained through Severe Plastic Deformation (SPD) via three cycles of Constrained Groove-Pressing (CGP) under elevated temperature. The effects of CGP and post-annealing (at 473 K for 15 and 30 min) on bio-corrosion were preliminarily investigated by potentiodynamic polarization measurements and constant immersion tests. Results obtained show that the as-processed samples with annealing exhibited improvements in yield strength and ductility while the bio-corrosion rate in Hank’s solution remains fairly similar during the early stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.