Abstract

This paper presents a study on flow hydrodynamics for single-channel serpentine flow field (SCSFF) and cross-split serpentine flow field configurations (CSSFF) for different geometric dimensions of channel and rib width ratios with electrode intrusion over varying compression ratios (CRs) in an all-iron redox flow battery. Pressure drops (Δp) measured experimentally across a cell active area of 131 cm2 for different electrolyte flow rates were numerically validated. A computational fluid dynamics study was conducted for detailed flow analyses, velocity magnitude contours, flow distribution, and uniformity index for the intrusion effect of a graphite felt electrode bearing a thickness of 6 mm with a channel compressed to varying percentages of 50%, 60%, and 70%. Experimental pressure drops (Δp) over the numerical value resulted in the maximum error approximated to 4%, showing good agreement. It was also reported that the modified version of the cross-split serpentine flow field, model D, had the lowest pressure drop, Δp, of 2223.4 pa, with a maximum uniformity index at the electrode midplane of 0.827 for CR 50%, across the active cell area. The pressure drop (Δp) was predominantly higher for increased compression ratios, wherein intrusion phenomena led to changes in electrochemical activity; it was found that the velocity distribution was quite uniform for a volumetric uniformity index greater than 80% in the felt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call