Abstract

Hydrogen energy, with its features of high calorific value, cleanliness and zero-carbon footprint, has been considered an ideal sustainable future energy carrier. Therefore, the identification of a green, efficient and cost-effective hydrogen production method becomes critically important. This paper proposes a novel solar-driven hydrogen production system (SDHPS) by introducing photovoltaic/thermal (PV/T) utilization technology and electrolytic water technology into the photo-thermochemical cycle (includes two processes: photochemical reaction and thermochemical reaction). Among the many parameters that affect the solar energy to hydrogen transformation efficiency, the separation wavelength λligr_pvt decides the energy distribution between photochemical reaction process in the photo-thermochemical cycle and photovoltaic/thermal (PV/T) utilization technology. In order to maximize the harvesting of the solar energy in the proposed SDHPS, this research aims to critically examine how to choose the separation wavelength λligr_pvt's value within the allowed range of 360 nm–400 nm to rationally distribute solar energy. Therefore, the numerical models for the PV/T, the electrochemical water splitting and the photo-thermochemical cycle are established in the paper and combined to examine the efficiency of hydrogen generation for the proposed SDHPS. The influence of separation wavelength λligr_pvt on the hydrogen production efficiency is discussed and analyzed under the variations of four chosen materials of photovoltaic (PV) cell (i.e., Si, GaAs, CIGS, or CdTe). It can be concluded that for the proposed SDHPS, the utilization of GaAs as the photovoltaic material demonstrated the highest solar energy to hydrogen transformation efficiency (i.e., 20.60%) under the separation wavelength λligr_pvt of around 360 nm, in comparison with the rest of the selected PV cell materials (e.g., Si, CdTe and CIGS). It is believed the results could provide guidance for the formulation and construction of higher hydrogen generation effectiveness systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.