Abstract

The yield of singlet molecular oxygen, O2(a(1)Delta(g)), produced in a photosensitized process can be very susceptible to environmental perturbations. In the present study, protonation of photosensitizers whose chromophores contain amine functional groups is shown to adversely affect the singlet oxygen yield. Specifically, for bis(amino) phenylene vinylenes dissolved both in water and in toluene, addition of a protic acid to the solution alters properties of the system that, in turn, result in a decrease in the efficiency of singlet oxygen production. In light of previous studies on other molecules where protonation-dependent changes in the yield of photosensitized singlet oxygen production have been ascribed to changes in the quantum yield of the sensitizer triplet state, Phi(T), and to possible changes in the triplet state energy, E(T), our results demonstrate that this photosystem can respond to protonation in other ways. Although protonation-dependent changes in the amount of charge-transfer character in the sensitizer-oxygen complex may influence the singlet oxygen yield, it is likely that other processes also play a role. These include (a) protonation-dependent changes in sensitizer aggregation and (b) nonradiative channels for sensitizer deactivation that are enhanced as a consequence of the reversible protonation/deprotonation of the chromophore. The data obtained, although complicated, are relevant for understanding and ultimately controlling the behavior of photosensitizers in systems with microheterogeneous domains that have appreciable pH gradients. These data are particularly important given the use of such bi-basic chromophores as two-photon singlet oxygen sensitizers, with applications in spatially resolved singlet oxygen experiments (e.g., imaging experiments).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call