Abstract

The use of textiles in soft robotics is gaining popularity because of the advantages textiles offer over other materials in terms of weight, conformability, and ease of manufacture. The purpose of this research is to examine the stitching process used to construct fabric-based pneumatic bending actuators as well as the effect of segment types on the actuators' properties when used in soft robotic glove applications. To impart bending motion to actuators, two techniques have been used: asymmetry between weave and weft knit fabric layers and mechanical anisotropy between these two textiles. The impacts of various segment types on the actuators' grip force and bending angle were investigated further. According to experiments, segmenting the actuator with a sewing technique increases the bending angle. It was discovered that actuators with high anisotropy differences in their fabric combinations have high gripping forces. Textile-based capacitive strain sensors are also added to selected segmented actuator types, which possess desirable properties such as increased grip force, increased bending angle, and reduced radial expansion. The sensors were used to demonstrate the controllability of a soft robotic glove using a closed-loop system. Finally, we demonstrated that actuators integrated into a soft wearable glove are capable of grasping a variety of items and performing various grasp types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.