Abstract

Taurine is a recently recognized plant growth regulator under abiotic stress. However, the information on taurine-mediated plant defense responses is scarce, particularly on taurine-mediated regulation of the glyoxalase system. There is currently no report available on the use of taurine as seed priming under stress. Chromium (Cr) toxicity considerably subsided growth characteristics, photosynthetic pigments, and relative water content. Furthermore, plants encountered intensified oxidative injury due to a significant increase in relative membrane permeability, H2O2, O2•‒, and MDA production. The amount of antioxidant compounds and the functioning of antioxidant enzymes rose, but imbalance due to over ROS generation frequently depleted antioxidant compounds. Taurine seed priming (50, 100, 150, and 200mg L‒1) notably diminished oxidative injury, strengthened the antioxidant system, and conspicuously subsided methylglyoxal levels through enhanced activities of glyoxalase enzymes. The accumulation of Cr content was minimal in plants administered taurine as seed priming. In conclusion, our research demonstrates that taurine priming effectively mitigated the adverse effects of Cr toxicity on canola. Taurine reduced oxidative damage, leading to improved growth, enhanced chlorophyll levels, optimized ROS metabolism, and enhanced methylglyoxal detoxification. These findings highlight the potential of taurine as a promising strategy to enhance the tolerance of canola plants to Cr toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call