Abstract
To determine whether sarcoplasmic proteins affected water migration in myofibrils during air-drying, with protein denaturation as an indicator of sarcoplasmic protein changes, the extent of sarcoplasmic protein changes in lamb during air-drying was first studied. The results showed that sarcoplasmic protein's thermal stability decreased and secondary structure changed, indicating sarcoplasmic protein denatured in lamb during air-drying (35 °C, 60% RH, 3 m/s wind speed). Subsequently, the effect of sarcoplasmic protein solutions, dried at different times and rates, on myofibril protein-water interaction was studied in vitro. Two sets of sarcoplasmic protein solutions were dried for 0, 3, 6, and 9 h in a drying oven, resulting in different degrees of change. These two sets with higher or lower drying rates were achieved by controlling the contact area between sarcoplasmic protein solution and air. These dried sarcoplasmic protein solutions were then mixed with extracted myofibril and incubated for 2 h. The results showed a significant increase in T21 relaxation time of the incubation system when sarcoplasmic protein solution was dried at 35 °C for 3 h. This indicated that myofibrillar protein-water interaction was weakened, facilitating water migration from the inside to the outside of myofibrils. The denaturation degree of sarcoplasmic proteins was slowed by a higher drying rate, thereby alleviating the increase in the amount of immobile water within myofibrils when dried for 6 h. In conclusion, the properties of sarcoplasmic proteins were influenced by both drying rate and time, thereby influencing the water migration within myofibrils during air-drying.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have