Abstract

Saliva facilitates food oral processing, bolus formation, swallowing, and sensory perception, in addition to contributing to oral health and phonation. Ageing, health affections, and polymedication are among many causes altering salivary production, modifying the mastication process, the food impregnation ratio, and in turn altering the characteristics of the bolus, swallowing, and digestion. In this in vitro work, using the AM2 masticator apparatus, which replicates the mechanical actions taking place while chewing solid foods and produces realistic food bolus in various oral conditions, we investigated the effect of salivary fluid characteristics, i.e., composition, quantity (from absence to hypersalivation), temperature, and enzymatic action, on the physical characteristics (i.e., particle size distribution (PSD), bolus mass, salivary fluid content) of in vitro boluses of Traditional French baguette.A ready-to-swallow bolus of baguette displayed on average a d50 value (median particle size by mass) of 4.1 ± 0.4 mm, with saliva fluid constituting ∼ 35 % of the final bolus mass. The absence of saliva in mouth led to a deficient oral processing, forming bread boluses constituted by extremely big particles (ca. 80 % of particles had a size > 7.1 mm) that likely cannot be swallowed safely. On the contrary, an excess of saliva favoured an excessive breaking down of bread, leading to bread boluses constituted by smaller particles than those formed under healthy salivary conditions (d50 decreased from 4.1 mm to 3.1 mm), having a higher salivary fluid content (+10 %). On the other hand, the salivary fluid temperature did not affect PSD, d50, bolus mass, or salivary fluid content of in vitro bread boluses, however, the addition of human salivary α-amylase did, favouring particle size reduction (d50 decreased to 2.6 mm). Therefore, beyond the correlation between bolus hydration by saliva and food properties such as hardness and moisture content, our findings indicate that the quantity of salivary fluid present in the oral cavity and the enzymatic activity of salivary α-amylase during bread mastication significantly influence both the particle size distribution and the fluid content of bread boluses, ultimately determining the physical properties of the bolus and, therefore, potentially impacting the subsequent swallowing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.