Abstract
Abstract Numerous factors play a pivotal role in shaping the mechanical and corrosion resistance properties of electrodeposited Ni-Cr alloy coatings. This study delves into the deposition of Ni-Cr alloy coatings on AISI 1040 steel, examining the influence of saccharin additives within the electrodeposition bath. Specifically, the concentration of saccharin within the solution was varied over a range of 0 to 2 g/l. Following the electrodeposition process, a comprehensive array of characterization techniques was employed, encompassing 2D surface roughness analysis, scanning electron microscopy, X-ray diffraction, nanoindentation, energy-dispersive X-ray spectroscopy and assessments of wear and corrosion performance. The characterization results of this article reveal a compelling difference between saccharin-free Ni-Cr coatings and their saccharin-modified counterparts. Notably, microcracks, a common occurrence in saccharin-free coatings, were suppressed in the saccharin-modified Ni-Cr coatings. Additionally, the latter exhibited a smoother and more uniform surface texture. A crucial observation was that the introduction of saccharin into the bath was directly associated with an increased incorporation of chromium within the coatings, resulting in higher nanohardness values. Furthermore, the residual stress within the coatings shifted from tensile to compression as saccharin concentrations increased. Concurrently, surface roughness and wear rates exhibited a consistent downward trend with increasing saccharin concentrations in the solution. The most significant findings were seen in the domain of corrosion resistance. Saccharin-modified Ni-Cr coatings outperformed the bare steel substrate and saccharin-free Ni-Cr coatings. Intriguingly, the enhancement of corrosion resistance was not linearly proportional to saccharin concentration; the optimal corrosion resistance was achieved at a concentration of 1 g/l.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.